Curious congruences for cyclotomic polynomials

نویسندگان

چکیده

Let $$\Phi _n^{(k)}(x)$$ be the kth derivative of nth cyclotomic polynomial. We are interested in values _n^{(k)}(1)$$ for fixed positive integers n. D. H. Lehmer proved that _n^{(k)}(1)/ \Phi _n(1)$$ is a polynomial Euler totient function $$\phi (n)$$ and Jordan functions gave its explicit formula. In this paper, we give quick proof _n^{(k)}(1)/\Phi them without giving form. final section, deduce some curious congruences: $$2\Phi ^{(3)}_n(1)$$ divisible by (n)-2$$ . Moreover, if k greater than 1, then ^{(2k+1)}_n(1)$$ (n)-2k$$ The depends on new combinatorial identity general self-reciprocal polynomials over $${{\mathbb {Z}}}$$ , which gives rise to formula expresses value as -linear combination coefficients minimal $$2\cos (2\pi /n)-2$$ As supplement, show monotonic increasing property _n(x)$$ $$[1,\infty )$$ two ways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curious Congruences for Fibonacci Numbers

In this paper we establish some sophisticated congruences involving central binomial coefficients and Fibonacci numbers. For example, we show that if p = 2, 5 is a prime then p−1

متن کامل

Lucas-type Congruences for Cyclotomic Ψ-coefficients

Let p be any prime and a be a positive integer. For l, n ∈ {0, 1, . . . } and r ∈ Z, the normalized cyclotomic ψ-coefficient {n r } l,pa := p − ⌊ n−pa−1−lpa pa−1(p−1) ⌋ ∑ k≡r (mod pa) (−1) (n k )( k−r pa l ) is known to be an integer. In this paper, we show that this coefficient behaves like binomial coefficients and satisfies some Lucas-type congruences. This implies that a congruence of Wan i...

متن کامل

Cyclotomic Polynomials

If n is a positive integer, then the n cyclotomic polynomial is defined as the unique monic polynomial having exactly the primitive n roots of unity as its zeros. In this paper we start off by examining some of the properties of cyclotomic polynomials; specifically focusing on their irreducibility and how they relate to primes. After that we explore some applications of these polynomials, inclu...

متن کامل

Some Curious Congruences modulo Primes

Let n be a positive odd integer and let p > n + 1 be a prime. We mainly derive the following congruence: ∑ 0<i1<···<in<p ( i1 3 ) (−1)i1 i1 · · · in ≡ 0 (mod p).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in number theory

سال: 2022

ISSN: ['2363-9555', '2522-0160']

DOI: https://doi.org/10.1007/s40993-022-00410-0